鼎点娱乐

文心大模型赋能商业智能助手的探索与实践
你的位置:鼎点娱乐 > 关于鼎点娱乐 > 文心大模型赋能商业智能助手的探索与实践
文心大模型赋能商业智能助手的探索与实践
发布日期:2024-10-14 12:42    点击次数:81

导读:本文将分享文心大模型在构建商业智能助手中的探索与实践,重点讲述其在爱企查中提升商业收益和用户体验的应用。文中将介绍利用大模型代码生成能力,和知识图谱,优化数据库查询效率,并通过加入表结构和样例数据提升代码生成准确率,还将介绍如何利用图形可视化进一步提升数据分析效率。

主要包括以下四大部分:

1. 商业信息查询介绍

2. 文心大模型构建商业智能助手的几种模式

3. 文心大模型赋能商业智能助手进阶

4. 商业智能助手的未来展望

01 商业信息查询介绍

首先来介绍一下商业信息查询的应用场景。

商务合作:评估合作伙伴的资质和规模,判断合作潜力。

销售展业:快速获取目标企业的有效联系方式,加速业务推进。

成本控制:通过了解供应商的成本结构和心理底价,运用博弈策略优化采购价格,实现成本节约。

消费决策:“职业闭店人”泛滥,如何在办理各种消费卡时避免踩雷。

投资理财:如何选择股票,避免被“割韭菜”。

以上场景中,有些是现代商业决策的关键,有些则与我们个人生活息息相关。要解决这些问题,方案之一就是去查询这些企业的信息,其投资关系、供应链关系,这就是商业信息查询。

商业信息查询是一个职场多边手,能够助力我们的一些重要决策。

大部分商业信息查询服务,如天眼查、企查查、爱企查等,主要通过整合来自公开渠道、第三方平台和官方记录的海量数据,为用户提供全面、精准的信息服务。这些平台收集包括企业注册信息、财务数据、法律诉讼、行业动态等多元信息,将其产品化,以满足不同用户需求。

服务对象广泛,既面向 B 端企业,帮助企业进行市场调研、竞争对手分析、风险评估等,也惠及 C 端个人用户,在消费决策、投资理财、职业规划等方面提供数据支持。以百度旗下爱企查为例,其效果显著,为用户提供了高效、便捷的商业信息查询体验。通过这些平台,用户能够快速获取所需信息,做出更明智的商业和生活决策。

我们在去年底开始利用 Copilot 来助力爱企查转型升级,革新交互体验,提升商业效率。Copilot 的核心功能在于精准匹配供需双方,既满足买家的采购需求,又确保卖家的优质供给,通过高效撮合,促进了双方的深度交流与合作。

至今年 3 月,Copilot 系统展现出显著成效,具体表现为:

对话满意度提升 52%:通过智能匹配,对话质量显著提高,用户反馈更加积极。

对话开口率提升 54%:系统精准推荐,有效提高了双方沟通的针对性和效率。

日均留资量提升 329%:这一商业指标的大幅提升,意味着系统能够显著增加用户的活跃度和粘性,对于爱企查这样的通用平台而言,这意味着从免费用户到付费用户的转化率得到了显著提升。

Copilot 通过优化匹配机制,不仅提升了用户对话的满意度和效率,还直接促进了企业的收益增长,增强了用户体验。这一成果证明,Copilot 是企业数字化转型的有效工具。通过 Compiler,企业能够更加精准地触达目标客户,提高转化率,实现商业目标的同时,也为用户创造更多价值。

02 文心大模型构建商业智能助手的几种模式

接下来介绍我们如何利用文心大模型构建商业智能助手。

1. 检索增强技术(RAG)

第一种模式就是利用检索增强技术,即检索一些文档用做知识增强。然而,单纯依赖 RAG 在商业场景下的局限性逐渐显现,尤其是在面对庞大商业知识库和复杂企业关系时,直接的网络文档检索往往无法提供准确、深入的信息。这正是爱企查等商业信息查询平台存在的价值,它们拥有数亿条企业数据和数十亿条商业知识,远超普通搜索引擎的覆盖范围。

挑战与局限在于:

理解深度与广度的缺失:例如查询企业联系方式,RAG 往往返回客服电话,而对于销售或商务合作,这显然不够精准。再如腾讯投资案例,RAG 可能列出美团、拼多多,却忽略了这些公司与腾讯的间接投资关系,以及腾讯内部复杂的投资架构。

推理能力的局限:查询腾讯老板投资的公司,RAG 给出的仍是腾讯直接投资的企业,未能理解“腾讯老板”指代的是马化腾,且马化腾的个人投资与腾讯公司投资存在差异。

为克服上述挑战,我们提出了一种融合企业自建知识库与文心大模型的解决方案。

首先,对用户查询进行深度意图识别,明确查询目标是特定企业及所需属性(如电话、法人等)接着,利用企业知识库进行精准查询,将查询结果反馈给文心大模型,由其生成最终的、高度个性化的回答。

例如,查询腾讯的联系电话时,我们先识别出查询意图,然后在知识库中以“腾讯”为 key,“电话”为 value 进行查询,将结果交由文心大模型处理,生成精确回答。对于腾讯投资的公司,模型不再局限于表面关联,而是揭示了如华谊兄弟等与腾讯有实际持股比例的复杂关系。

又如,查询腾讯的法人投资了哪些公司。这时的意图识别变得更加复杂。为了解决这类复杂查询,我们提出了知识图谱检索方案。

在查询时,不再是简单地通过写一些规则去查,而是利用大模型的代码生成能力,生成 SQL 查询语句。然而直接生成代码的准确率初时较低,大约在 10% 左右,这主要是由于模型对具体数据库结构理解的不足。

为提高代码生成的准确率,我们采取了以下两步优化策略:

注入表结构知识:首先,我们向模型中注入数据库的表结构(schema)信息,帮助模型理解数据库字段,减少字段匹配错误。这一举措显著提升了代码的正确性,准确率可提升至 40% 左右。

样例学习:进一步,我们利用大模型的学习能力,通过提供具体场景下的样例查询,让模型在实际应用中学习和优化。这种 in-context learning(上下文学习)策略使得模型能够根据样例调整生成策略,准确率可进一步提升至 70% 到 80%,实现了质的飞跃。

然而,大模型上下文窗口是有限制的,当查询涉及多表、多字段的复杂数据库时,直接将所有表结构(schema)信息嵌入 prompt 中变得不切实际。为解决这一问题,我们采用了 schema linking 策略:

动态 schema 提取:首先,根据用户查询内容,动态识别所需查询的表及字段,避免一次性加载全部表结构。

缩减与优化:通过分析查询需求,仅将相关表的 schema 信息嵌入 prompt,实现对上下文窗口的有效利用。

最终,这一策略不仅解决了上下文窗口限制,还提升了查询效率,确保了大模型在复杂数据库查询场景下的实际可用性。

去年项目启动时,我们对零样本(zero-shot)和少量样本(few-shot)学习的效果进行了初步调研,比较了文心 ErnieBot、ChatGLM、ChatGLM 精调和 LLaMA-Chinese-alpaca 精调的表现。调研结果表明,尽管这些模型在服务效率上表现出了初步的实用性,但与实际应用落地的高要求相比,仍有不小差距。这一发现促使我们深入研究模型优化策略,特别是如何通过样例学习(in-context learning)和大模型的反思能力提升模型性能。

我们发现,通过给定特定场景下的样例,模型能够学习到更具体的查询模式,从而显著提升查询准确性。然而,模型在生成代码(如图数据库的查询语句)时,仍可能出现错误,这引发了外界对大模型能力的质疑。值得注意的是,大模型具备自我反思与修正的能力,这一特性为提升整体准确率提供了新的途径。

我们让模型在生成查询语句后,进行自我检查与修正。以图数据库为例,模型生成的图查询语句(GQL)可能包含边向性(in/out)错误,或存在点与边的匹配错误。通过让模型反思并修正这些错误,查询的准确性得到了显著提升。例如,查询“腾讯有哪些高管?”时,模型能够识别并修正边的向性错误,将错误的“out”改为正确的“in”。同样,对于“查询马化腾在腾讯的职位?”这一问题,模型能够识别并修正点到点、边到点的匹配错误,确保查询的准确性。

这一策略的应用,使得模型在复杂查询场景下的表现大幅提升,最终线上准确率超过 90%。

对于间接投资关系的查询,模型展现了强大的通用性。例如,查询“小米公司间接投资了哪些公司?”时,模型能够追踪复杂的多层投资链,揭示小米通过 A 公司间接投资 B 公司的关系,而无需依赖特定模板。这一能力仅通过大模型的代码生成与反思能力即可实现,展现了在复杂知识图谱游走与查询方面的强大潜力。

03 文心大模型构建商业智能助手进阶

在很多场景中,我希望答案通过图形可视化地呈现。

我们采用了开源工具 Apache ECharts。这一工具提供了很多不同种类的图表,其中的关系图非常契合商业信息查询的场景。

我们设计了一套利用大模型生成可视化图表的方案。首先,模型被定位为图表专家,而非传统的数据库工程师。用户提出需求,模型接收查询结果数据,最后生成图表。这一方案取得了非常令人满意的效果。

我们正在探索大模型在更深层次的应用——企业风险分析。这一领域关注企业的可靠性,评估其是否会突然终止运营。通过收集目标公司及其法定代表人的信息,结合关联公司状态,我们能够进行综合风险分析,为用户提供全面的公司评估。这一分析过程不仅涉及企业基本信息,还深入考察法定代表人的信用状况,包括是否被列入失信名单,以及其名下其他公司运营情况。通过整合这些数据,我们能够提供一个综合风险评分,帮助用户判断企业合作风险。

由于此类深度分析涉及高级商业数据,通常属于 VIP 服务范畴,我们当前产品的定位为服务于所有用户,因此这一高级功能尚未正式推出。尽管如此,我们已成功在其他场景中应用了这套风险评估系统,验证了其有效性和实用性。

04 商业智能助手的未来展望

展望未来,大模型的最终价值在于应用,尤其是如何切实提升我们的工作效率。

以会议场景为例,未来的智能助手将在会议上实现即时数据分析与市场调研,为决策提供数据支持。同时,它能主动思考会议中提出的问题,识别潜在商业机会,评估风险,为讨论提供详实数据,显著提升会议效率。

这一愿景展现了大模型在日常生活与生产中的最大作用——帮助企业提效。通过智能助手的介入,我们能将更多精力投入创新与决策,让技术真正服务于人,推动企业与社会的持续进步。